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Abstract

Hotel companies not owning a single bed, taxi companies not owning a single car, the worlds’ most
diverse store not owning a single till; in the 21st century we are witnessing a rapid transformation
of our way of life, greatly driven by such digital platforms. Ride hailing services in particular have
been quite present in our lives, disrupting how we think about transport. As a platform business
these services benefit from network effects: their value increases according to their number of users.
Due to the existence of network effects, these services are believed to benefit a lot from first mover
advantage. However, no one has studied whether there are limits in the network effect for ride
hailing services, something crucial to competition watchdogs when deciding if they should let a
service like this into the city. The current literature presents extensive analysis and modelling of
various graph based methods, looking at the apparition of “small-world” or “scale-free” phenomena,
as well as some structural properties. Although very useful, these models are often very abstract
and rarely lend themselves to empirical falsification. Here we study the limits of network effects
in ride hailing platforms. Using agent based graphical models we find the sensitivity of riders and
drivers to waiting and idle time to be decisive factors in the growth of these platforms. We validate
our results using real ride hailing data from the New York City Taxi and Limousine Commission
dataset. We find that our model can accurately capture the growth of ride hailing platforms both in
terms of market-share and population. Finally, we explore alternative "worlds" where the tension
between first mover advantage and increasing waiting or idle time is readily observable. This work
is a first look into how empirical findings could be used to aid data driven regulation, ultimately
allowing policy makers greater insights in their decision making process.
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Chapter 1

Introduction

Today, with our the ever-increasing degree of digitisation in cities, the market for ride-hailing plat-
forms (RHP) has exploded [1]. In about a decade we have seen dozens of such companies (Uber,
Lyft, Kapten, ViaVan, . . . ) grow to form a multi-billion dollar industry. This is not only a feature
of developed markets. Indeed in many developing countries such as China (DiDi Chuxing), Iran
(Snapp), Russia (Yandex.Taxi) etc, RHPs are an intricate part of everyday life.

Uber-style platforms typically benefit from some form of network effect which results in a rich-
get-richer dynamic (Matthew effect) [2], also called preferential attachment [3]. This occurs when
an increase in the number of users of a product or service, directly increases its value to existing
and new users. For example, additional users riding with a RHP will mean a richer market for
drivers which incentivises them to join the platform. With this increase in drivers, waiting times
are reduced which in turn attracts additional riders to join the RHP.

However, intuition suggests that for businesses like Uber, there could be some inherent limit to how
much they can grow due to this network effect. For example, for Uber passengers, the difference
between a waiting time of 30s and 1min is not significant. Therefore, once Uber reaches a satura-
tion such that waiting times are down to 1 minute, any growth in the number of drivers will only
have a marginal effect on the number of riders, potentially downgrading the classical dynamics of
preferential attachment, to a less potent version.

While extensive studies on network effects and how they induce exponential growth are abundant,
the question of their limits is yet to be addressed. There has been work done to model ride-hailing
platforms, but none go in detail to describe the fundamental underlying mechanic of their growths:
how individuals make their joining decision.

In response to this gap in the literature, here we propose an agent based model that can simulate
the network effects acting on various such platforms in a city. Crucially, our model captures the
push and pull that users of a platform experience due to variances in waiting and idle time. We
then investigate the limits of these network effects, as well as the applicability of our model using
freely available ride-level data from New York City.

Our model, inspired by a model that replicates competitive dynamics observed within the immune
response to cancer [4]1, allows us to independently factor in 5 key parameters. These are: the
agents’ sensitivity to waiting time (µwaiting) and idle time (µidle); the portion of agents that are
riders (usually ±95%); the calculation of the price surging coefficient (η); and the delay between
platform’s entrances to market. The latter allows for studying the power of first movers’ advantage.

This novel work brings with it multiple contributions. We are proposing here a simple model that
captures micro level intuitions from the agents driving the exponential growths in the ride-hailing
platforms: riders and drivers, and are able to reproduce macroscopic intuitions naturally. Taking
New York City’s ride-hailing market as a baseline, we are able to reproduce the market-share
growths from Uber and its competitors in the city. From this point, we conduct a sensitivity anal-

1In the case of the cancer dynamics, competition is for resources. While here, competition is for new users.
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ysis based on the parameters that reflect the real-world situation in NYC. This analysis is akin
to the investigations that policy makers could undertake. By analysing the impact of different
delays in market entry for different platforms, they could make more informed decisions in their
jurisdictions. Finally, as we are sourcing our model from immunology, this work may be able to
shine a light on universal competitive dynamics that can be found both in ride-hailing platforms
and the human body.

This work shines a much needed, data-driven light on competition between RHPs. The initial
empirical validation of our model opens the door for competition authorities in cities to look to
empirical research to guide their decision making regarding the introduction of RHPs in their
jurisdictions.
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Chapter 2

Background

2.1 What are network effects
A network effect (NE) is an economical or business term that describes a situation where the value
of a product or service increases with its number of users [5]. Classical examples of such that have
been studied extensively include the citation pattern of scientific papers [6], the World Wide Web
(WWW), or even the collaboration graph of movie actors [7]. The term “Network Effect” is used
because these observed phenomena result from certain dynamical properties that are intrinsic to
some particular types of networks.

These examples naturally exhibit NEs. A scientific paper which has been cited thousands of times
is present in a substantial amount of other papers, gaining more exposure and increasing its odds
of being cited again. Similarly, a website that has a certain reputation and many frequent users
is more likely to be shared, increasing its odds of being linked on another page. Finally, a famous
actor will naturally be offered more important roles in upcoming movies and therefore will increase
his number of co-stars.

In pop-culture, “The rich get richer” is often the term used to describe such apparently unlimited
exponential growth. In the literature, one can often find the terms: “Matthew Effect” [8] from
the biblical verse “For to every one who has will more be given, and he will have abundance. . . ”,
“Cumulative Advantage” [9] or more recently “Preferential Attachment” [7].

2.2 Local vs global network effects
The examples laid out in the previous section are all instances of global (or direct) NEs. Typically,
networks that profit from a direct NE have a single type of node, and the addition of a new node
directly increases the value of each user. For example, when the telephone was introduced to the
public, each additional phone allowed each owner to call an additional person, increasing their
individual value for the service [10].

A typical example of a global NE could be the indexing of a search engine such as Google. As far
as we know, Google’s indexing grossly works by expanding its graph of known (indexed) websites
by crawling through these [11]. What this means is that they go through their known websites in
search for new links which they have yet to index. Naturally, having more indexed websites ex-
ponentially increases the number of discoverable links, and therefore introducing a global network
effect.

Not all networks benefit directly from growth alone: those exceptions are called local (or indirect)
NEs. Platforms that strongly profit from these are ride-sharing or ride-hailing platforms (RHP).
If we model Uber as a network, it would be a bipartite network with two different types of nodes.
Once the platform has a high number of rider nodes, the business becomes quite lucrative for
drivers, increasing the number of driver nodes. This new increase in drivers cuts the waiting time
for riders, which in turn increases the number of rider nodes.
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Although not as obvious, local network effects are far from being the exception. Take any mes-
saging app such as Facebook Messenger, WhatsApp or Snapchat. The overwhelming majority
of their users are only aware of their own contacts, they only interact through the service with
people they are directly connected to. In order words, if we were to draw an undirected graph of
such a platform, each node would only be aware of its immediate neighbours - essentially creating
minuscule local networks [12]. Agents have comparatively low degrees, and are unaware of the
overall structure of the graph.

The case of Uber is an interesting one because it also represents a “second” layer of locality:
although the increase in drivers is correlated in an increase in users, this is the case only in local
geographically areas. RHPs benefit from these local effects, but this has yet to be rigorously
studied. In addition to geography, there might also be waiting times that come into effect, which
we will study in this paper. Although Uber is a global network, it consists of many smaller local
clusters of bipartite graphs, within which we observe indirect NEs.

2.3 The implications for competition

Network effects have always had a considerable impact on financial markets. Historically, economists
and competition watchdogs viewed NEs as a significant barrier to entry and protective of strong
market positions. Now, more modern economic has recognised the various limits of NEs and nega-
tive consequences of platform growth [13]. Old literature suggested that networks exhibiting direct
network effects (such as the telephone network) rapidly scaled to a monopoly. The widespread
view was that once a particular platform reached a certain scale, it wasn’t profitable to build a
competing company [14]. As a result, the former would have significant market power, and com-
petition enforcers tended to share this view.

As the understanding of multi-sided platforms advanced, so did the economic literature on both
direct and indirect network effects [15]. Rapidly, economists recognised that the existence of NEs
didn’t necessarily ensure a strong first mover advantage: they could suffer from negative exter-
nalises just as much as positive ones. For example, as a search engine gains users it becomes
attractive to advertisers, which are beneficial for the business. On the other hand, having more
advertisers (or even users) has no effect on user demand [16]. In other cases, this impact might
even be negative. Take paper or online newspapers, the increase in number of readers is correlated
with the number of potential advertisers, but more advertising diminishes the value for the read-
ers [17]. For social networks, which are an ever-expanding class of NE-prone platform, growth can
even invite competition [18]. As the number of profiles gets large, the number of users who are
trying to use the platform for disruptive or illegal activities also becomes problematic. This also
naturally comes at a higher infrastructural, network and maintenance cost.

The explosion of digital platforms also brings its own set of problem for network effects. With
social media, ride-hailing and dating platforms being free to use, there is no consumer “lock-in”:
the cost of moving to a competing service is often close to none. Additionally, while they may
have a preference, users are not exactly limited to using a single platform (e.g. always using Uber
instead of Black Cabs). This concept is called “multi-homing” and has been investigated by Rochet
& Tirole [15].

All things considered, profiting from a network effect is not the one single secret to a successful
business. Platforms on a multi-sided market must capture as many positive externalities, while also
mitigating the negative effects that naturally come with growth. Such examples would be Face-
book, that all-the-while competing with the (at the time ≈ 2004) giants Myspace and Friendster,
enforced its strict policy for “real” profiles, requiring a valid college email addresses. It also rigor-
ously enforced its terms of service, banning what it thought was obscene and nude content [19].
On the other hand at Myspace, news reports of minors who lied about their age and child sex
predators who preyed on them caused public concern. Advertisers subsequently abandoned the
platform and the site floundered [13].

With the development of online platforms benefiting from NE, some may seem to hold a monopoly.
This seems to be the case in the mind of most people when they think about Uber, although in cities
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like London or New York, the competition is considerable. On the other-hand, this competition
might not exist in smaller cities such as Clermont Ferrand in France, leading to a real monopoly.
Research has yet to determine the reason for this divide, and give a model for predicting when
each situation is most likely to occur.

2.4 Graph-based models of network effects

At first, networks of complex topology have been explained using Erdős and Rényi’s (ER) random
graph theory [20]. Their model starts by generating N vertices, and connects each pair of vertices
with a probability p. From this setup, the probability that a randomly chosen vertex has k edges
follows a Poisson distribution P (k) = e−λ λ

k

k! , with parameter:

λ = N

(
N − 1

k

)
pk(1− p)N−1−k

Unfortunately, this research dates back to 1960, where data on large networks was nonexistent.
Due to this, the theory couldn’t be tested on real world data. Today, we have access to virtually
unlimited data about all kinds of networks. This allows to empirically validate previously proposed
models.

A more recent model proposed by Watts and Strogatz (WS) is the small-world model [21]. In this
model, N vertices are aligned to form a 1−D lattice, each vertex connected to two nearest other
ones. An additional edge is then drawn to any other vertex with probability p. Because this can
spontaneously generate “shortcuts” between otherwise far-apart vertices, this process decreases the
average distance between each of them, leading to a small-world phenomenon [7] (also commonly
known as “6 degrees of separation” [22]).

A common point between both the ER and WS models is that the probability of finding a highly
connected node decreases exponentially with k, i.e. vertices with high degree are virtually non-
existent. This conflicts with what we can observe in empirical data. Indeed, in (very) large
networks, such highly connected vertices actually have a large chance of occurring, following a
power-law tail. Barabási and Albert (BA) [7] explain that two generic aspects of real-world net-
works are missing in these two models.
First, both networks start with N vertices, and no new one are ever added. The models simply
attach edges between them using two different methods. In contrast, real-world networks are open,
they form by the constant addition of new vertices from their environment. New actors join the
industry quite often; the WWW grows exponentially over time with the addition of new websites;
and research papers are constantly being published.
Secondly, random networks assume a random and uniform probability for two vertices to be con-
nected. In the real-world we commonly see what BA coin as “Preferential Attachment”. Newly
published papers are much more likely to cite well known and peer-reviewed research rather than
unknown works. This means that the probability of a new paper citing one that already has many
citations (a higher degree node) is much higher than citing a paper with few citations (a low degree
node). The variety of such existing examples illustrate that the way a new vertex links to existing
ones is far from being uniform.

Barabási and Albert base their model on exactly these two features:

• Continuous growth (of the population size N),

• Preferential Attachment (of new nodes to high degree nodes).

Their network starts with a small number of vertices (m0) and grows by the addition of a single
vertex at each time step. New nodes are then connected by m(≤ m0) edges to m other (differ-
ent) vertices. Preferential attachment is then implementing by saying that each new node has a
probability Π to be linked to node i depending on the degree ki of that vertex. That is:

Π(ki) =
ki∑
j kj
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This network evolves into a scale-invariant state with the probability that a vertex has degree k
follows a power-law distribution with exponent γmodel = 2.9± 0.1.
From comparing these models, we can see that BA’s work related best to real-world networks.
Thanks to this, we will take inspiration in his work to hopefully bring a new insight on NE
profiting businesses and their limits.

2.5 Local network effect models

Current local NE models often focus on precise modelling of a complex network, by setting specific
rules for individual clusters within them. Arun Sundararajan (AS) bases his model on the fact
that individual vertices have no knowledge at all about the underlying structure of the network
they are a part of [12]. The model is graph based and contains N fixed vertices which represent
agents. Each agent is associated to a set Gi, the neighbour set of vertex i. This can be seen as the
friends, or contacts of the agent. If j ∈ Gi, we can say that j is a neighbour of agent i. This creates
an undirected graph of agents connected to their respective “close” acquaintances. A visualisation
of such a neighbourhood can be seen in Figure 2.1. In addition, each vertex is initialised with an
unchangeable parameter θi ∈ [0, 1] which influences what AS describes as its payoff value. At each
time-step, agents make a binary decision ai to adopt or not a new abstract network good. The
decisions are influenced by their neighbours and modifies their reward, or payoff πi:

πi(ai, ai−1, Gi, θi) = ai[u([
∑
j∈Gi

aj ], θi)− c]

where this payoff is dependent on a value function u(x, θi) that quantifies how many neighbours
have adopted the good.

Figure 2.1: Two agents and their neighbourhood clusters Gblue and Gred

AS’s model successfully represents the fact that if your close family, friends or co-workers adopt
something, you will to some extent be incentivised to do the same. His goal was to identify the
overall adoption trend of the network, and how local adoption can influence the global result,
taking a game theory-like approach.

One notable feature that AS describes in the “future work” section of his paper is that agents could
adopt one of many incompatible goods, in a dynamical/evolutionary way. In our model we propose
just that, where users are able to join one of n RHPs based on a localised measure of the city’s
topology.

2.6 Lack of empirical validation

Throughout each of the models that we’ve seen this far, there has been no empirical work on
competition and ride hailing platforms. Furthermore, BA verified their model on networks of at
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most a few hundred-thousand vertices, and the same goes for AS and WS [7, 21, 12]. While this
can seem like a substantial size, real world networks now easily go above tens of millions of nodes
with a good amount of this data now being collected on astronomical scale.
Obviously, most of this real-world data is not made public, but some have used public datasets of
millions of records to build alternative simulations.

R. Tachet et al. have built a “shareability” model of rides and tested their findings on empirical
data from metropolises ranging from San Francisco, London and Singapore [3]. Their argument is
that our increasingly connected urban areas drastically increase the number of unique trips (made
in a personal car) that are similar enough to be merged into one car-pooling, all the while keeping
the time delay to a minimum. This would reduce congestion as well as societal, environmental and
economical cost in a city.
In their model, two trips are defined to be shareable if they would incur a sharing delay of no
more than ∆ minutes, relative to a single ride. The authors of the paper suggest a formula for the
sharability (S) of rides for any given city:

S = 1− 1

2L3
(1− e−L)(1− (1 + 2L)e−2L) with L = λ∆3 v

2(C)

|Ω(C)|

with v the average traffic velocity of the city, λ the average rate at which taxi rides are available,
and Ω the city’s area.
What they were able to demonstrate was that in all the metropolises/megalopolises that they
studied, sharability rapidly saturated to near 100% as both the average of trips/h or L grew.

2.7 Looking towards biological processes
Preferential attachment is famously seen in a variety of different domains [7]. Interestingly these
domains are incredibly different from one-another. From author citation networks, the world-wide-
web to the collaboration graph of movie actors or even the human nervous system.

Biological processes are particularly relevant to our case as many of them include two sided feedback
loops and vary wildly in complexity. Some examples include the HPA axis1, that is understood to
control reactions to stress and regulate many body processes [23] or more simply the blood sugar
regulation process, in which insulin and glucagon raise and lower these levels in a negative feedback
loop [24].

A few of these biological processes are described in rigorous mathematical models. In one case,
a minimal model correctly predicts the increase in gene expression variability after mutating a
particular biological signalling pathway [25]. In another case, modelling is used to study can-
cer regulation and looks at various elements involved in gene regulation: miR-17-922, E2F3 and
Myc4 [26]. Although these all involve feedback loops from multiple agent types, it is not immedi-
ately clear how they would be applied to ride-hailing platform markets, unsurprisingly.

However, one that would be of particular interest would, in theory, directly replicate competitive
dynamics between cells inside the human body with two types of agents. This is done by one group
that models the immune response to cancer [4]. They present a mathematical model of cancer-
immune competition under immunotherapy. Through the direct modelling of the cell populations
they are able to successfully reproduce emergent behaviour of cancer, in which the immune system
“guides” the cancer to continuously express new cell types that are unknown to it.

1The hypothalamic–pituitary–adrenal axis, is a complex set of direct influences and feedback interactions among
three components: the hypothalamus, the pituitary gland and the adrenal glands.

2An element of the microRNA family that regulates gene expression.
3A group of genes that are involved in the cell cycle regulation and synthesis of DNA in mammalian cells.
4A regulator that increases the expression of genes that contribute to the formation of cancer (through cell

proliferation).
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Chapter 3

The Model

3.1 The agent population model

Ride-hailing platforms (RHPs) are composed of two types of agents: the riders and the drivers.
Each agent has a specific set of criteria that they look for when choosing which platform to join.
By considering only a handful of these criteria, our model allows us to analyse some key emergent
properties of RHPs.

The dynamics of the two populations are modelled through a system of structured equations where
Rrider and Rdriver model the net growth rates of rider and driver populations. We will look into
each separately.

We use these rate equations in a custom graph-based model. In particular the model starts out
with N -many principal nodes which represent the RHPs (e.g. Uber and Lyft). From there, nodes
(agents) are generated and become one of two types: riders and drivers. Figure 3.1 contains an
illustrative example: competition between Uber and Lyft.

Rider agent
Driver agent

Uber Lyft

C

B

A

- (./'( = 0.95
- /(.5'( = 0.05

!!"#$! ", $%&' = )!"#$!(", $%&')
∑")!"#$!(", -)

!!"#$! ", ./0" = )!"#$!(", ./0")
∑")!"#$!(", -)

-!"#$!(#, %&'() -!"#$!(#, *+,#)

Figure 3.1: The graph based simulation in a two platform market. Prider(t, u) is the probability
that at time t a rider agent will join platform u. A: A variable number of agents are generated
at each time-step. B: 95% of them become riders, 5% are drivers. C: Each agent joins a platform
with probabilities derived from underlying rate equations.

The drawing of edges from new agents to platforms is dictated by the rate equations, Rrider(t, ui)
and Rdriver(t, ui). As such these equations directly describe the rate of platform growth, in terms
of riders and drivers.
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3.1.1 Building the rider agent rate equation

Rrider(t, ui) := κdriver(t, ui)− µwaitingρrider(t, ui)− ηρrider(t, ui) (3.1)

ρA(t, u) =
fA(t, u)

frider(t, u) + fdriver(t, u)
κA(t, ui) =

ωA(t, ui)∑U
j 6=i ωA(t, uj)

A ∈ {rider, driver}

(3.2)
When a rider considers which RHP to join, they mainly consider a combination of three criteria,
which are defined in equations (3.1) and (3.2). These are:

1. the platform’s popularity,

2. the sensitivity of a rider to the average waiting time experienced by platform users,

3. the average ride price within a platform.

Riders typically have an inherent sensitivity to waiting time. Ask them to wait too long for a ride,
and they are likely to check another app, or get to their destination differently. This is modelled
through the µwaiting parameter, and here we assume that this can be modelled as a single param-
eter for each platform (i.e. µwaiting is the average sensitivity of users from that platform). Note
that this parameter is not the waiting time itself, but the sensitivity of platform riders to waiting
time. Almost more importantly, a RHP that has a higher number of riders w.r.t. their drivers will
necessarily make their riders wait longer for each ride. This is modelled by the ρrider(t, ui) and is
completely analogous to over-crowding.

Next, users of RHPs are naturally attracted by more “well-known” platforms. It has been widely
studied and it is thought that these platforms benefit from a “rich get richer” effect, also known
as “preferential attachement” which allows them to grow exponentially [7]. For many years, if you
thought of ordering a taxi from your smart-phone, odds were you would think of Uber first. In our
model, we specifically take into account: the riders of RHPs are attracted to those platforms with
the highest share of driver agents. This way, if a platform is currently booming amongst drivers,
this would mean a relatively high driver-per-rider ratio, thus being attractive to riders. This is all
taken into account in the κdriver(t, ui) term. Note that the way this function is being computed
is completely identical to the probability of a new edge being attached to a particular node in the
Barabási and Albert (BA) model [7]. This has been studied in detail and has been shown to be a
key element in exhibiting preferential attachment.

Last and definitely not least, the price of each ride is critical. Everywhere riders are unanimously
attracted by low prices. This is represented in our model by ηρrider(t, ui). This term can be seen
as positively correlated to the average platform ride price.

Note that all these terms share an equal weighting in the model. This is a simplifying assumption
as the underlying relationship might contain other weightings or even non-linearities. Further,
more complex models could segment rider and driver populations based on their price elasticity
among a number of other metrics. As a first model, we choose not to make further assumptions
about the underlying dynamics.

3.1.2 Building the driver agent rate equation

Rdriver(t, ui) := κrider(t, ui)− µidleρdriver(t, ui) + ηρrider(t, ui) (3.3)

Quite similarly to riders, when a driver chooses which RHP to work with, they consider a combi-
nation of criteria which can define how attractive the platform is to drivers.

Drivers, other factors being equal, will always choose to serve the ride which minimises their idle
time, modelled through µidle. This is considered to be the average sensitivity to idle time through-
out a platform’s drivers, a factor negatively affected by over-crowding, and applicable to all drivers
through the multiplicative term ρdriver(t, ui).
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The next important factor that boosts a platforms’ attractiveness is having a substantial pool of
active riders. This is a positive effect and is represented by the κrider(t, ui) term. It describes what
share of all riders the platform is able to offer the driver.

Lastly, and almost identically to the rider case, ηρrider(t, ui) involves the price of each ride a driver
is able to charge. While this was a negative for riders, who aim to minimise cost, here drivers aim
to maximise this same positive amount.

Rates as joining probabilities

Rrider and Rdriver, intuitively represent how attractive a particular platform is to an agent at a
specific time. In a monopoly, this is essentially a measure of attractiveness, and defines how likely
it is that a newly generated agents joins the platform. That is if 10 agents are being generated and
RA = 0.8, then 8 new agents will join the platform. This implicitly means that in a monopoly, not
all generated agents will have joined a platform. In a competitive setting, the rates can be used
to construct joining probabilities. We assume that there is a total pull of agents in the market
(corresponding to

∑
j RA(t, uj)), so that the probability of joining platform i is equal to its share

of the total pull that their rate represents ( RA(t,ui)∑
j RA(t,uj)

). All together, this means that if a second
platform joins the market during the simulation, there will be an abrupt change in the way the
simulation allocates agents. The consequences of this will be apparent and are discussed in later
sections.

3.1.3 Reproduction of known behaviour
Ride-hailing platforms have particularly intuitive behaviours that our model is able to reproduce.
First we will see that the exponential growth, typical of businesses that benefit from network
effects, is well reproduced here (figure 3.2). Then we will see how increasing the sensitivity to
idle and waiting time reduces the total population of their respectively affected agents (i.e. high
waiting time sensitivity in a platform implies a lower population of riders) (figure 3.3). Finally an
increase in ride price should have a noticeable effect on the number of rider and driver agents, as
this is negative for the former and positive for the latter (figure 3.4).

Exponential Growth

It has been well documented that exponential growth, led by network effects, arises when two
conditions are met: the population N increases at every time step, and the probability that a
specific node in the network grows is proportional to that node’s degree. Specifically, the probability
that a new edge is drawn on node i should be:

Π(i) =
ki∑
j 6=i kj

where degree(i) = ki

Our simulation reproduces the first aspect naturally, with new agents being added to the environ-
ment at each time-step. Instead of modelling an entire graph, we consider the market-share of each
platform to be proportional to the degrees of a graph’s node. Explicitly, one could model each
platform as a graphs’ cluster. The centroids would be the platforms, and each edge connecting it
to a unique agent. The market-share of each platform is thus directly proportional to the degree
of the centroid over the total number of edges in the graph.

Figure 3.2 B shows the population growth of our agents when their decision to join a platform is
led solely by the platform’s overall market-share, compared to figure 3.2 A where this decision is
based on the rate questions from our model. In these plots we can see that the population of agents
in platform 1 is identical throughout. A slight difference arises for platform 2, where in our model
(A and C) its agents grow much faster than in the Barabási-like model. This growth difference is
due to the fact that in our model, riders (resp. drivers) are attracted by the driver (resp. rider)
market-share (as apparent in equations 3.1) and 3.3. On the other hand in the Barabási-like model
all agents are attracted by the same quantity, the general platform market-share.
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Figure 3.2: Agent population growth in a two platform competitive environment. Platform 2 starts
with a 100 time-step delay. All parameters are set to 0 throughout. A: Rider population growth
with our model. B: Rider population growth with Barabási like model. C: Driver population
growth with our model. D: Driver population growth with Barabási like model.
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Sensitivity to waiting and idle time

Figures 3.3 A, B shows how varying µwaiting and µidle impacts the total number of riders that
join a single RHP. As expected, the sensitivity to waiting time is inversely correlated to the final
population, and this is also true for drivers and their sensitivity to idle time. Both of these
parameters negatively impact the effective attractiveness of the platform. Intuitively, this models
what happens as agents grow more and more impatient; they are less likely to accept a high
waiting/idle time, this makes them less likely to join the platform and thus reduces the final
population of that platform.
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Figure 3.3: The effects of µwaiting and µidle on the agent populations as well as two extreme
situations of µwaiting (all in a monopoly). A: Rider population at the end of a simulation with
µidle = 0.5. B: Driver population at the end of a simulation with µwaiting = 0.5. C: The agent
populations during a simulation with µwaiting = 0.01 and µidle = 0.5. D: The agent populations
during a simulation with µwaiting = 0.99 and µidle = 0.5.

Figures 3.3 C, D illustrates the average population growth of both the rider and driver population
for µidle = 1

2 and µwaiting ∈ {0.01, 0.99}. The impact of rider waiting-time sensitivity is clear.
With high sensitivity, the growth completely disappears and dies out after only 100 time-steps.
On top of this, the value is so high that it prevents almost any users from joining the platform at
all. This peculiar, seemingly impossible effect that occurs when µwaiting is high will be touched
upon further in section 4.2.3.
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Sensitivity to ride pricing

Figure 3.4 illustrates the behaviour of the total rider and driver population as we change η, the
factor positively correlated with average platform ride price. The rapid decrease in rider population
does validate our first intuition, the riders are less attracted by the platform as the average ride
price increases. The way the driver population evolves is much more intriguing. From the plot,
we can see that the increase in price is initially favourable for the driver population, rising rapidly,
but at about η > 0.4, the population declines. At first glance this seems counter intuitive, higher
prices should be more attractive to drivers and shouldn’t lower their population. What we are
seeing here is actually that once the price goes past a certain limit, the rider population suffers
so greatly, that the loss in customers out-weights the gain from each individual ride price. This
indicates an “optimal” price which maximises the driver population.
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Figure 3.4: The effect of η on the agent populations (with µwaiting = 0.5 and µidle = 0.5). A:
Constant decline of the end-simulation rider population due to increased prices. B: The end-
simulation driver population peaks at an “optimal” ride-pricing value before declining rapidly.

3.2 The links between ride-hailing and biology
Our model as described above, takes its roots from a population model of competition between
cancer and T-cells within the human immune response. Here we go into more detail about the
reasoning behind this peculiar origin.

Riders and drivers in RHP benefit from a two sided feedback loop which takes into account compe-
tition for resources. This kind of phenomenon has been studied extensively, and specifically in the
biological literature. One such model comes from immunology and studies the population growth
rates coming from the interactions between cancer and T-cells.1

3.2.1 The original model
Here we will dive into the details of the original model [4], what they were modelling and what
each term represents in immunological terms.

Consider a population of cancer cells structured by u ∈ U ⊂ IR+ that represent their antigenic
expressions, and a population of activated T cells structured by v ∈ V ∈ U that represent those
antigens that T cells can effectively attack.

1We leave to the reader any philosophical considerations about comparing the operation of a RHP to the dynamics
of cancer.
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The local densities of cancer cells and T cells are modelled by the functions fC(t, u) ≥ 0 and
fI(t, v) ≥ 0. The related total densities are:

ρC(t) =

∫
U

fC(t, u)du ρI(t) =

∫
V

fI(t, v)dv

The model aims to simulate the growth of both cells using therapeutic agents boosting proliferation
and immune memory: cP (t) ≥ 0 and cM (t) ≥ 0 respectively. In a sense, these two aspects account
for T-cell population and effectiveness respectively.

Cancer cells proliferate, net of apoptosis2with rate κC > 0. This is their “natural” growth rate.
Furthermore since cellular proliferation is hampered by the competition for resources, they assume
that interactions lead to cancer death with rate µC > 03.

Next T-cells undergo rapid clonal expansion which is accounted for by including binary interac-
tions between cancer cells of trait u and activated T-cells with trait v: ηθE (|u− v|) > 0, η

′

θE
(.) ≤ 0.

Again due to limited resources, T-cells die on average according to a rate µI > 0.

To model the effects of T-cells killing cancer cells, a second binary interaction is described by
ηθI (|u− v|) > 0, η

′

θI
(.) ≤ 0.

Again the proliferation rate of immune T-cells is modelled by κP > 0, and the actions of thera-
peutic agents that boost immune memory is modelled through a reduction in death rate related to
homeostatic regulation4 by parameter µM > 0.

The dynamics of the two cell populations are described by the follow set of equations, where RC
and RI model the net proliferation rates of cancer cells and T cells respectively:

RC(t, u) := (κC − µCρC(t)) −
∫
V

ηθI (|u− v|)fI(t, v)dv (3.4)

RI(t, v) :=

[∫
U

ηθE (|u− v|)fC(t, u)du+ κP cP (t)

]
− µI

1 + µMcM (t)
ρI(t) (3.5)

These two rate equations are the progenitors of the rate equations described in our model described
in sections 3.1.1 and 3.1.2 (equations 3.1 and 3.3).

3.2.2 Modelling RHP competition using ideas from immunology

There are many direct parallels between the resulting dynamics that dictates how riders and drivers
behave within the world of RHPs, and how T-cells and cancer cells behave within our bodies.

The most important being competition for resources. Just as cells compete with themselves for
the body’s resources, riders compete for a valuable resource: the driver which will take them from
their location, to their destination in the least amount of time. On the flip side, drivers also com-
pete with each-other to serve the most customers, thus increasing their revenues. Both of these
resources, interestingly being the agents themselves, are indeed finite and variable. Fundamentally,
both biological cells and RHP users compete amongst themselves for a limited shared resource,
leading to similar dynamics.

Another point of similarity is over-crowding, and it is a direct consequence from the competition
for resources. As the density of a single cell-type increases, this also hinders their reproduction
and is therefore self-limiting (in a situation with equal resources). This is analogous to a RHP
that sees its number of riders explode, while its drivers do not. Eventually, each individual rider
will have such a poor experience, that it will lead to slower growth [and identically for a growing
number of drivers, with a constant number of riders].

2i.e. taking total death rate into account.
3This death is directly related to the waiting / idle time what we have considered in our model.
4This is regulation due to competition for resources required for the cells to remain alive.
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While these comparisons may seem to be direct, there does seem to be subtleties. In particular, the
death-rate of cells and the way that this factor is increased through over-crowding is known/can
be measured empirically in a lab. Importantly, all cells of the same type can be assumed to behave
identical. For ride-hailing platforms, this is not true. Each individual agent is unique, and while
effects can be measured on the population, it is hard to say anything specific of individuals. An
assumption that is necessarily made here is the homogeneity of these rider/driver agents, which
must be kept in mind.

3.2.3 Modifications of the original model
As our model is treating an entirely different domain, some modifications of the original model
are necessary, while keeping the structure of the model the same, hence preserving the strikingly
similar underlying structure between the two domains.

This first modification to be made was altering the way each agent is understood to grow. The
basic cell proliferation rates can be considered constant, and this is simply not the case for a ride-
hailing platform. Its attractiveness is variable, and thus we have replaced the constants κ with
functions κ(t, u) to reflect this variable growth. These take into consideration the time (t) and
the specific platform (u) in order to give a positive growth rate element, dependent on the RHPs’
market-share, replicating preferential attachment.

The next change was regarding the way cell death was amplified due to over-crowding, ρA(t).
This was originally defined as ρA(t) =

∫
U
fA(t, u)du A ∈ {C, I}, the density of cell type A. In

our model, we consider different RHPs, whereas in the original model, they considered different
antigenic expressions of a cancer or T-cell. Our solution was to consider the proportion of agents
which are riders (resp. drivers) as this indicator. A high value would translate to over-crowding
of riders (resp. drivers), which would amplify the negative rate term.

Finally a number of extra parameters exist in the cell population model, and while we do have
parallels for them, we choose not to include them in this work. One term that appears is cP (t) in
equation 3.4. This multiplicative term can be understood to represent the economical incentives
(or lack-thereof) that influence the positive joining factors of driver agents. The main other one
is denominator of µI

1+µMcM (t) . This serves to control the death-rate of immune cells. For our
purposes, µM is understood to be the reduction in platform attractiveness for drivers due to driver
attrition; and cM (t) corresponds to the effects of external mitigation to this attrition5. While
these parameters would bring additional realism and we find them interesting, they are somewhat
orthogonal to our research question of interest, namely the study of the limits of network effects
in modelling competition.

3.2.4 The limits of this comparison
This inter-domain link is not perfect. The main issue being that in reality T-cells kill cancer cells,
removing them completely from the population. In the RHP case, this comparison is obviously non
existent6. Whilst some agents might negatively affect others, pushing them away from a certain
platform at time t, that agent does theoretically have the capability of returning to this platform
at a later time t1 > t. Note that the current model does not account for this.

Another smaller point is that the model made extensive use of the population function f(.) and
its density ρ(.) by considering the “area” of the cells’ possible antigenic expressions. In our case,
the analogous space would be the different platforms that are being considered. This is a prob-
lem because while the original paper considered 400 antigenic expressions, we would only ever
consider (at most!) a handful of RHPs, never going past the dozens as most RHP markets are
oligopolies [27]7. This led to open ended terms in the original model.

5e.g. a good healthcare plan for drivers offered by a specific platform.
6Hopefully.
7Implied by the existence of a limit in number of drivers for any particular ride-hailing market.

17



Chapter 4

Results

4.1 Reproducing real-world data

4.1.1 The NYC TLC dataset
In order to empirically validate our model, we reproduce the market-share values and growths of
major real-world RHPs competing in the same environment. To do this, we use the New York
City’s ride-hailing and taxi rides dataset provided by the Taxi and Limousine Commission [28].
This dataset contains more than 780 million completed rides dated from January 2015 to December
2019 and was made available thanks to a freedom of information act request.

From these we extract market-share values for Uber as well as Lyft, Via and Juno (that we clas-
sify as competitors) and use this as ground-truth values for the benchmarking of our simulations.
Detailed information regarding our data sanitation procedure can be found in section 6.2.

4.1.2 Simulation results
To generate a model that corresponds to the real-world data, we only consider the parameters
~µwaiting and ~µidle, setting the price parameter ~η to 0 as most ride hailing platforms tend to offer
similar prices [29]. Using a constrained grid search on the parameter space, we then find the op-
timal model, which best replicates the market-share dynamics observed over the past 5 years in
NYC. The optimal model is defined as one which minimises the RMSE between the model predic-
tion and observed empirical values. The details of what parameters were tested, and the methods
used can be found in section 6.1.4.

Figure 4.1 illustrates the ground-truth data obtained from the TLC dataset as markers (triangles:
Uber, cross: competitors). The generated market-shares using our simulation are the solid of cor-
responding colour (blue: Uber, orange: competitors). Note that the simulation is fitted only on
70% of the available data (before the dotted red line). The dashed line, marked as “Untapped”,
corresponds to the fraction of generated agents that chose to not join Uber at the time where it
was the only available platform, between January and April 2015.

The “bump” that can be seen at the early stage of the simulation is a consequence of how we chose
to model monopolies differently from multi-platform scenarios. In a monopoly, agents join the
unique platform w.r.t. the rate equations. This means that if the growth rate of a platform is < 1,
some agents are essentially choosing to join no platform at all. This changes suddenly as a new
platform enters the market, and now all generated agents must join a platform. We recognise this
as one of the limitations of our model, and will discuss this further in section 5.2. Nonetheless,
given that the fit was performed on only 70% of the data, this captures the approximate intuition
that was aimed for and is overall a good result.

To show how our model is able to fit long-term data, we also attempted to score each generation
with the entire dataset. Upon doing so, the optimal parameters were independently found to be
identical to those previously found, suggesting that market dynamics had already converged to
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Figure 4.1: Optimal model fit on the first 70% of the NYC TLC dataset. The parameters are
~µwaiting = (0.25, 0.05) and ~µidle = (0.9, 0.2). The model was fit with the RMSE on values to the
left of the red dotted line. The black dashed line represents the untapped market, agents which
chose to not join Uber whilst the market was in a monopoly (Jan-15 to Apr-15).

Platform Parameter 70% fit 100% fit

Uber µwaiting 0.25 0.25
µidle 0.9 0.9

competitors µwaiting 0.05 0.05
µidle 0.2 0.2

Table 4.1: Optimal parameters found by the model after having fit on 70% and 100% of the data.

a steady state after 70% of the observation period. This further validates our initial modelling
assumption that different platforms can be modelled by considering only average platform level
parameter values such as average waiting time sensitivity of riders.

Detailed explanations of the simulation structure can be found in section 6.1.4

RMSE Evaluation

Table 4.1 describes the parameters founds after fitting the model on 70% of the data and 100%
of the data. In the above we have used the RMSE metric between each generated curve and the
corresponding platforms’ original data. For these specific fits, Uber had “training” and “testing”1
scores of 0.1072 and 0.0904, and the competitors had scores of 0.0565 and 0.0498.

4.2 Sensitivity Analysis

From the previous results, it would be natural to conclude that a strong first-mover advantage
exists in our simulations as in the real world. In this section, we will investigate the robustness of
this phenomenon, and discover under which conditions it breaks / arises.

Throughout we will compare the end of simulation market-share values of two RHPs, u1 and u2.
In each simulation, we fix three of the four parameters that make up the platforms (~µwaiting and
~µidle) and analyse the effect of varying the fourth as well as the delay after which the 2nd platform

1Where “training” refers to the RMSE on the first 70% of the data, and “testing” to the RMSE on the whole.
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is introduced to the market.

Note that throughout we will use the ~µ vectors to represent the sensitivity to waiting and idle
times of each platform, where the ith entry corresponds to ui.

4.2.1 Sensitivity analysis on real-world fitted model

Let us begin by observing the impact that changing agents’ sensitivities to both waiting and idle
time from a real-world fit has on the competitiveness of the platforms.

In these simulations we will start with a set of parameters:

~µwaiting =

(
µ1
waiting

µ2
waiting

)
~µidle =

(
µ1
idle

µ2
idle

)
~η =

(
0
0

)
withµiwaiting/idle ∈ [0, 1]

From these, we will choose one to be variable, and will also vary the delay after which platform 2
(u2) enters the market (w.r.t. platform 1, u1). This will give us a heat-map of values where the
heat represents the market-share advantage (or disadvantage!) of u1. For this real-world applica-
tion, we will let u1 be Uber and u2 be its collective competitors as in figure 4.1.

In this section we will take the parameters that mirror the real-world situation in New York City
(as per section 4.1.2). That is, we will set the values from table 4.1. From the data, we also know
that Uber’s competitor entered the market at the equivalent of the 65th time-step in our simula-
tion. To investigate on the sensitivity of each of these variables, we will generate four heat-maps.
The X will represent one of the four above parameters, and the Y will always be the competitor’s
market-entry time.

Figure 4.2 shows this analysis. The dotted lines in each plot correspond to the real-world values of
the corresponding variables. As an example, in figure 4.2 A, Y = 65 corresponds to the real time
at which Uber’s competitors come into market, and X = 0.25 corresponds to Uber’s real µwaiting
(as found by our model). The heat in red shows areas where Uber comes out ahead in terms of
market-share, and those in blue correspond to situation where its competitors come out ahead.

The first thing to notice here is how each of these figures contain a boundary around which healthy
competition, defined as low differences in market shares, occurs. Furthermore, each intersection of
the dashed lines (which correspond to the situation that reproduces the NYC market) is located
almost exactly on this boundary. There are likely a number of basic economic reasons for this, such
as supply and demand pricing that are beyond the remit of this research. However, this feature
is more visible in figures 4.2 A and C due to the abundance of rider agents v.s. driver agents. It
also tells us that if the riders of Uber had a slightly higher sensitivity to waiting time, µwaiting, its
competitors would rapidly dominate the market.

Figure 4.2 C tells the story of Uber’s competitors. As before we can also see a boundary on which
competition is possible, although more difficult. Where previously we could see the market being
split evenly, here Uber is always at an advantage. All we can say is that if the competitors had
joined the market earlier, they would have an increasing foothold in the NYC market.

Finally, in figures 4.2 B and D we can most clearly see the effect of the first-mover advantage.
While most of the plot sets Uber as an inevitable winner (regardless of its competitors sensitivity
to idle time), it is clear how punitive a late market entry is. Depending on drivers alone, the only
way to reach a non-monopoly is for all platforms to start almost at the same point in time.

4.2.2 Sensitivity to waiting and idle times

Now that we have analysed a real-world case, let us observe what happens in some more radically
different versions of this market: considering two nameless platforms with arbitrarily low valued
parameters. Instead of fixing values based on an optimal fit as previously, we will now fix three
parameters to a value k ∈ {0.1, 0.23} and vary the fourth. Again the delay at which our second
platform joins the market will always be variable. As such, our first intuition might hint towards
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Figure 4.2: Difference in market-share κ(Uber)− κ(competitor) where three of the four µ param-
eters are fixed according to the best optimal fit on empirical data. This figure demonstrates the
sensitivity of the final market shares to Uber’s µwaiting (A), Uber’s µidle (B), the competitor’s
µwaiting (C), the competitor’s µidle (D). All remaining values are fixed according to their optimal
discovered by the model (fig. 4.1), and the dashed black line represents the variable’s optimal value.
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the fact that the longer this delay, the lower chances for u2 to gain any users at all.

Figure 4.3: Difference in market-share κ(u1) − κ(u2) where three of the four µ parameters are
fixed to an arbitrary low value (k) to represent an imaginary world. This figure demonstrates the
sensitivity of the final market shares to u2’s µwaiting (A and B), u2’s µidle (C and D). In figures
A and C, we fix k = 0.1. In figures B and D, we fix k = 0.23. The dashed black line indicates the
situation where all four parameters have the same value (k).

Figure 4.3 shows in red how much of an advantage platform 1 has compared to platform 2 in
terms of market-share. The black-dashed lines here represent the values that the three other (non-
varying) parameters are fixed at. In Figures 4.3 A and B a curve can again clearly be seen that
marks a boundary on which platform 2 must aim to be within. Joining the market late, if it
does not have an exceptionally good waiting times, means agents will certainly favour platform
1. Its only chance is to minimise both delay to market entry, and this µwaiting. This is also
the case, although with less importance, for the idle time as shown in figures 4.3 C and D. Here
the parameter doesn’t have much of an effect on the overall outcome (due to the low population
of drivers). The key factor is to arrive into market as soon as possible in order to mitigate the
first-mover-advantage penalty, as was somewhat expected.

4.2.3 Model limitations

In this section we will observe the behaviour that arises from the rate equations when we fix rel-
atively high values for the µwaiting and µidle times. This is not expected to reproduce intuitive,
real-world applicable data, but is nonetheless interesting.
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As previously, in each simulation we fix three of the four parameters appearing in ~µwaiting and
~µidle. We will first vary µidle for four different fixed values k ∈ {0.5, 0.63, 0.76, 0.9}, and then do
the same operation with µwaiting.

Figure 4.4: Difference in market-share κ(u1) − κ(u2) where µwaiting and u1’s µidle are fixed to
an arbitrary high value (k) to represent another imaginary world. This figure demonstrates the
sensitivity of the final market shares to u2’s µidle for different such k. A: k = 0.5. B: k = 0.63.
C: k = 0.76. D: k = 0.9. The dashed black line indicates the situation where all four parameters
have the same value (k).

In figure 4.4 we can start seeing a trend. As we increase the base value (k), the boundary at
which these platforms can coexist in a duopoly moves somewhat from left to right. In Figure 4.4
A, when all parameters are about average we see something interesting happening. We begin to
clearly see somewhat of a border between the red and new blue regions. This area corresponds to
the parameter space in which these platforms are able to coexist by splitting the market 50-50 in a
relatively stable manner. We are also able to clearly see situations where platform two not only is
able to achieve competition, but also dominate the market. The reason the boundary is so volatile
in figures 4.4 B, C and D is that µidle has a notoriously low impact on the final market-shares
of the platforms, due to their relatively low population size compared to riders. The boundary
movement here is due to the base values of the µwaiting more than the variation of the µidle

Going into detail, it seems always better for platform 2 to enter the market as late as possible
in figures 4.4 A and B. What is going on here? It turns out that if platform 1 isn’t attractive
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enough in terms of waiting/idle time, in a monopoly, agents would rather not join a platform at
all. This leaves κ(u1) to be strictly decreasing throughout the simulation, and the longer this
goes on, the easier it would be for platform 2 to come out ahead thanks to its more favourable
parameters. Furthermore, even when platform 2’s parameters are not much better than u1’s, the
market converges to a duopoly where both platforms share about 50% of the market each.

Overall these figures seem to suggest that the first-mover advantage is quite weak in these sce-
narios. Even though as seen previously µidle has a relatively low impact on the overall platforms’
market-share, we can see that the first-mover advantage can still be reversed with low values of
µidle for an appropriately “bad” base values.

Next we will perform the same analysis using µwaiting, and will identify similar results, in a much
stronger fashion.

Figure 4.5: Difference in market-share κ(u1) − κ(u2) where the µidle and u1’s µwaiting are fixed
to an arbitrary high value (k) to represent an imaginary world. This figure demonstrates the
sensitivity of the final market shares to u2’s µwaiting for different such k. A: k = 0.5. B: k = 0.63.
C: k = 0.76. D: k = 0.9. The dashed black line indicates the situation where all four parameters
have the same value (k).

Figure 4.5 A is extremely intriguing. We can again clearly identify a curve flowing between the
regions where platforms 1 and 2 respectively dominate. This boundary corresponds to an equilib-
rium where in those conditions both RHPs are able to exist in a duopoly, splitting the ride-hailing
market 50-50.
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In addition to this, almost irrespective of the delay to market entry, for values of X < 0.3, u2 sys-
tematically comes out ahead in terms of market share. For the other values, we see a completely
different version of the story: u1 comes out well ahead, but increasing the delay to market entry
is actually detrimental to u1! Again in all scenarios, it is in platform 2’s best interest to join the
market as late as possible.

Now from Figure 4.5 we can see how this boundary which we discussed earlier washes through the
plot and disappears almost completely in Figure 4.5 C. Once the default sensitivities to waiting
and idle times are high for platform 1, it continuously bleeds users by offering a poor service. This
effect is so strong that regardless of when platform 2 comes in, it wins by a landslide. Note also
that although u2 wins systematically, as soon as its own sensitivity to waiting time (X) goes above
0.7 (and even more-so after that), the win isn’t so monopolistic, with the far right sides of the
plots being lighter coloured, indicating that platform 1 is able to retain some of its market-share,
coexisting with platform 2.

Overall, these plots seem to suggest that µwaiting in particular is extremely sensitive and powerful
in this model. Keeping it to a low value seems to best reproduce real-world scenarios, where
exponential growth still exists although in a controlled fashion. Increasing its value leads to
situation where agents would rather not join a platform, even if it is the only one offering its
service. Naturally this allows any new platform that enters the market with slightly better service
to quickly and immediately dominate the market.

25



Chapter 5

Discussion

Using an agent based model, starting from basic intuitive ideas about network effects, waiting and
idle time, we are able to generate a graph based model that replicates a number of intuitive and
empirical features in RHP markets. In the case where µwaiting = 0 we saw that this allows for the
reproduction of exponential growth due to the usual network effects. Then, as we increase this
value slightly, we start to be able to control this growth, lowering it below the heavy monopoly.
This area is extremely sensitive and increasing µwaiting too far tips it into a third phase, where
the exponential growth is completely cancelled out. From this point forward, larger values lead to
a larger and larger bleed in users from the platform, even in the absence of a second competing
platform, and even goes to hindering the platform from future growth as a new platform enters
the market.

We have also shown that our model is able to accurate reproduce the market-share evolution of
the two biggest ride-hailing platforms in arguably the most important competitive environment of
the United States (New York City). In addition, given partial data, our model is able to generalise
quite well into the future.

Through a sensitivity analysis we have also shown that the first mover advantage, whilst strong
in some settings, is not indefinite and can be easily counteracted by the agents’ sensitivities to
waiting/idle times.

Finally, in a slightly altered form, this model was originally designed to simulate the population
dynamics of cancer and T-cells inside a human body. Given the somewhat successful application
of this model to a completely unrelated domain concerning human behaviour, it begs the question,
how much of this shared dynamic is due to some underlying universal property of two part feedback
networks, irrespective of what the networks describe. However interesting, this particular question
is outside of the scope of our work here, but should be investigated further.

Limits of the first mover advantage

After our initial simulations, it seemed as though being late to join the RHP market would con-
demn the platform to a low market-share. With this in depth analysis for the 2-platform scenario,
this seems increasingly unlikely.

It has been clear throughout this work that the sensitivity of riders to the waiting times of their
platforms was one of the main driving factors to achieve high attractiveness. We have now em-
pirically shown that it is also stronger than the first-mover advantage. Platforms that join the
market late, are still able to take a substantial share of the market. They merely have to find a
large enough, and not very time-sensitive, customer base. Whether that is a possibility is outside
the scope of this research but warrants further study.

The results we obtained from figure 4.2 are quite strong. After grounding the model parameters
on real-world long term data, we are able to effortlessly simulate what could have happened in an
alternate world. This type of analysis has immense potential for competition authorities. It could
give them key insights about how the market might evolve depending on their choices to allow
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platforms X or Y into their jurisdictions. We have seen that, had their competitors joined earlier
and with drivers that had a higher tolerance for idle time, Uber would not be the ride-hailing ruler
of New York City.

This also means that if the first platform’s agents are not sensitive to waiting/idle time, the first-
mover advantage is indeed strong, and allows it to dominate the market with little resistance from
the entering platform.

5.1 Limitations of current study

We recognise here that one major flaw of the simulation is how it behaves differently in a monopoly
from an oligopoly. Given that agents have a positive chance to join no platform, with the correct
parameters, the way the market-share represents the platforms growth has its limits. Platforms
in a monopoly, with the right set of parameters, can essentially bleed users. This need not be a
limitation as it could be interpreted as bad service, reducing their effective market-shares greatly
as time goes on, yet in reality, it is difficult to imagine the growth of these platforms from the start.

Another limitation from this study is the fact that unlike many previous models on ride-hailing
platforms, we do not model the number of rides directly. By modelling the growth of each agent
type, we forego the details of ride-matching, a key component of RHPs. This effectively limits our
options as far as empirical validation goes as more data is available on number of rides, rather
than number of riders/drivers (which are often bundled as “users”). However, it could be argued
that the total number of riders and drivers, combined with average usage statistics would result in
rider/driver data that can be fed into our model. However, at this early stage, we did not explore
such data validation techniques.

Lastly, we acknowledge that the simplicity of some parts of the model might come as a shortcoming.
Firstly, both µwaiting and µidle could be modelled differently, in a way that makes them both related
(as they could be in the real-world). Secondly, the price coefficient η is quite simplistic and hasn’t
been expanded much upon in this research. In the real world, this price is not-only variable, but is
modelled very specifically and varies quite a lot from platform to platform and even agent to agent.
These three improvements would drastically increase complexity but would lead to an even more
realistic simulation. Here we have omitted these largely to favour the simplicity of this model.

5.2 Future research directions

As hinted towards in the limitations of this study, there are multiple avenues one could go down
in terms of extending this work.

Firstly, increasing the complexity of µwaiting, µidle and η would greatly improve the performance
of this model. What’s more, perhaps unifying the definitions for the µ might drastically reduce the
parameter space which currently grows exponentially with the number of additional platforms.

Another way this model can be improved is by considering the geography of a particular city in
order to better refine the over-population metrics (the ρA(t, u) in equations 3.1 and 3.3) that are
already used. One way of achieving this is to model the platforms’ market-share in an ensemble
graph-based model where each section of a city map1 acts as a mini ride-hailing platform. Having
this geography introduced to each platform would allow for a global simulation. Simulating the
entire Uber company, and observing the growth of different clusters in response to other platforms
would be an extremely interesting extension of this work.

Finally, correcting the “bump” that appears in our market-share simulations (e.g. figure 4.1) would
be a welcome improvement, however, we don’t believe it would change the message of the results
presented here. In its current version, the simulation changes behaviour as the total number of
platforms in the market goes from 1 to any more than that. This leads to a situation where a

1Potentially represented by a Voronoi tessellation
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platform can be bleeding users, and then suddenly go to growing again in face of competition. This
aspect of the model could be addressed and would improve its real-world performance.

5.2.1 Wider world implications
This work brings an interesting new light to the limits of network effects. Furthermore, it could
be a first step to the usage of more complete simulation tool-kits by regulators across different
metropolitan areas. They could complement their decision making process with empirically val-
idated models similar to this one in order to simulate a number of scenarios, and analysing the
impact on competition throughout.
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Chapter 6

Methods

6.1 The Simulation
Here we will go into the details of how the simulation works exactly, and how we are able to extract
results from it.

The code is entirely written using Python 3.7 and the only dependencies are Numpy [30] for data-
structure manipulation and Matplotlib [31] for the generation of plots. This project is entirely
open-source and can be found on GitHub [32].

6.1.1 Agents
At the heart of our simulations are our agents. These are intentionally kept as very simple classes
that are created only when a platform is set to grow. On their creation (as part of a variable
cluster size), they are assigned to be either riders (with 95% probability) or drivers (with 5%
probability). This large difference in population is parametric, but is fixed to these values in
order to match virtually all empirical data on ride-hailing platforms. Once they are created, the
simulation supplies them with a set of information regarding each platform that is currently on the
ride-hailing market. This includes the number of riders and drivers within each platform at the
given time, as well as the proportion of riders/drivers that those correspond to within the market.
Using this information, the agents apply the respective rate equations (equation (3.1) or (3.3))
in order to generate a joining rate corresponding to each platform. If there is a single platform,
then this rate corresponds to the direct growth for the platform, otherwise these rates are first
normalised (making them sum to 1) before being sent as growths.

6.1.2 Ride-Hailing Platforms
Around each of these agents and at a higher level we can find ride-hailing platforms (RHPs). These
hold most of the actual data for the simulation. Each platform keeps track of its own number of
agents (both drivers and riders separately) as well as the corresponding market-share. These are
all stored indefinitely, meaning that platforms store their entire growth history and makes it easy
to extract at the end of the simulation. Upon their creation, each platform immediately starts with
both 1 rider and 1 driver. Platforms are also given information about the current market. As part
of their constructors, they receive the current total number of riders and drivers throughout all
other platforms. This means that each platform always starts with a market-share of 2

N , where N
is the total number of agents currently in the simulation. As just hinted at, the market-share of a
platform is defined to be the number of users it has, over the total number of users in the market.
Although this isn’t typically how market-share is calculated, this metric should be equivalent to the
real-world market-share for our purposes (and would only be off by a constant factor regardless).

6.1.3 The Simulator
Finally comes the simulator class. This object has the responsibility of creating and running a
single iteration of a simulation, from end to end. It is created directly from the main program loop
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and is given all the appropriate parameters. These include:

• N : the simulation length (in number of new agent generation waves),

• U : the number of RHPs to generate in the simulation,

• µwaiting: as a list it corresponds to the sensitivity to waiting time for each of the platforms
in the simulation,

• µidle: similarly, the sensitivity to idle time of each platform,

• η: this price parameter for each platform, this is an indication of how expensive each ride
will be,

• delays: as a list, the time at which (during the simulation) each individual platform is to
enter the market. At least one platform must be active at time 0,

• n_joins: the number of agents to release onto the market at each time-step.

From these parameters, the simulator’s first task is to generate all the platforms that need to start
at time 0, as well as to schedule all the next platform creations / entries to market. Then a simple
global clock counts through the N steps, generating n_joins new agents and making them decide
which platform to attribute growth to.

This entire process is then repeated it number of times in the main program loop. This allows
us to extract a 95% confidence interval for all the interesting metrics, namely: number of riders,
number of drivers and market-shares throughout the simulation.

6.1.4 Constraint optimisation based grid-search
In order to find the optimal set of parameters which describe real data as accurately as possible,
we perform a grid-search on the parameter space.

In a scenario with P platforms, each simply having a pair of µwaiting and µidle parameters, leads
to NP ×MP possible combinations (where N andM are the granularities of the µ). Running each
combination at least 10 times in order to get an average RMSE score is obviously not tractable if
we wish to consider a granularity of less than 10−1. In order to circle this problem, let us consider
four possible scenarios. An individual platform can have a combination of:

• Many drivers, for few riders: in which case µwaiting would be low and µidle should be high,

• Few drivers, for many riders: in which case µwaiting would be high and µidle should be low,

• Many drivers, for many riders: in which case both µwaiting and µidle would be low,

• Few drivers, for few riders: again in which case both µwaiting and µidle would be low.

As we can see, it is never possible for a real RHP to have both a high µwaiting and a high
µidle. This means we can apply constraint optimisation to our parameter space. Hence whilst
generating it, we can simply apply this rule (limiting the average value of the µ) to greatly reduce
the number of parameters. In order to generate our main results, we used this technique with
N = 19,M = 9, P = 2 andL = 0.6. Limiting µwaiting+µidle

2 ≤ L lead to a reduction of the
search-space by nearly 60%.

6.2 New York City’s Taxi and Limousine Commission (TLC)
dataset

The New York City Taxi and Limousine Commission (TLC) is a local government agency that
licenses and regulates the medallion taxis and for-hire vehicle industries. They have been publish-
ing (and somewhat updating) a tremendous amount of data regarding all of their recorded rides
within the city: a total of 2.63 billion trips are recorded. Importantly for our purposes, this data
is not limited to just cab rides. It is initially split into three parts: data bout yellow cabs, green
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cabs, and for-hire-vehicles. The latter is of interest to us as this represents rides offered by our
ride-hailing platforms.

While the dataset also includes records for cabs, we choose to exclude them from our market-share
analysis. In this work, we look at the effects of competition between ride-hailing platforms. We
cannot account for the taxi market because they do not share the same two-sided dynamics that
RHPs do. This comes from the fact that there are a fixed number of drivers in each metropolitan
area1, although it would be interesting to extend this work to include them in the future.

This data on RHPs is available monthly from January 2015, and monthly thereafter up-to December
2019. These records are extremely detailed:

• dispatching_base_number: A unique identifier attributed to each RHP. These identifiers
are also tied to a geographic area,

• PUdatetime and DOdatetime: The pick-up and drop-off time and dates (accurate to the
second),

• PUlocationID and DOlocationID: The pick-up and drop-off location IDs which correspond to
various metropolitan areas. These are broken up into “Borough” and “Zone” (e.g. Manhattan
/ Lincoln Square East),

• SR_flag: Binary value (0 or 1), determines whether or not the ride was shared (e.g. Uber
Pool).

Note that for years 2015 and 2016, the only information is the dispatching_base_number as well
as datetime and locationID of either pick-up or drop-off (not specified).

Readers who are interested in seeing ways in which this entire dataset can be analysed are in-
vited to read Todd Schneider’s article “Analyzing 1.1 Billion NYC Taxi and Uber Trips, with a
Vengeance” [33].

For our purposes, we only need a single piece of information for each individual ride: which RHP
offered it. This can directly be cross-referenced with a mapping from base number to RHP, which is
provided by the TLC. Unfortunately, there are approximately 126 million rows that either contain
no base number, or one that isn’t documented. These rides will thus be ignored. This leaves us
with a total of 782 million rides that have been offered by one of: Uber, Lyft, Juno or Via between
2015 and 2019.

We will use this data in two ways, one of which was particularly experimental. First, we grouped
the total number of rides that each platform offered by date, and extracted monthly market-share
data on these platforms. In order to simplify the analysis (and to focus on the two main platforms),
we have aggregated all data corresponding to Via and Juno and labelled it as “other” for all of our
simulations. Secondly we also regroup and count the number of rides offered by each platform in
order to generate an accumulated number of rides offered by them.

Lastly, in order to use RMSE as a metric to compare the market-share points generated by our
simulations and the this real-world data, it was necessary to either down-sample the N -dim market-
share vectors generated (1 entry per time-step), or to up-sample the real data. For no particular
reason, we chose to up-sample the real market share values, by extrapolating the values between
each month. Starting with 60 data points, this increase the resolution to 1889 points. Therefore
we simply increased the length of the simulations to match the length of the data.

1Due to the fixed number of annually distributed licenses.
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